C.U.SHAH UNIVERSITY Summer Examination-2020

Subject Name: Classical Mechanics

Subject Code: 5SC01CLM1		Branch: M.Sc. (Physics)	
Semester : 1	Date : 26/02/2020	Time : 02:30 To 05:30	Marks : 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Attempt the Following questions

- **a.** Define cyclic coordinates
- **b.** Give the expression for Legendre's Dual Transformation for two functions F(v) and G(u)
- c. State two importance of Hamiltonian
- **d.** Write the general expression for D'Alembert's Principle.
- e. State conservation of Linear momentum for a system of particles.
- f. List the importance of Generalized coordinates
- g. What do you mean by constraints in motion of particles?

0-2	Attempt all questions	(14)
L.	Explain in detail the Kepler's problem used to comment on eccentricity of orbits.	08
	Quote some points to show the significance or advantages of Hamiltonian over	06
	Lagrangian.	
	OR	
Q-2	Attempt all questions	(14)
	'Routhian function is intermediate to Lagrangian and Hamiltonian'. Justify	06
	Derive the Euler-Lagrange's equation of motion	08
Q-3	Attempt all questions	(14)
	Explain in detail constraints and its types with suitable examples	07
	Deduce the expression for D'Alembert's Principle	07
	OR	
Q-3	Find the expression for Lagrangian for a Spherical Pendulum	07
	Enumerate on the Hamilton or Variation principle	07

(07)

	SECTION – II					
Q-4		Attempt the Following questions	(07)			
	a.	State the uses of Generating Functions				
	b.	Write the expression for Poisson bracket for two dynamic variables \mathbf{u} and \mathbf{v} .				
	c.	How one can use infinitesimal transformations for momenta and position representation?				
	d.	Write two identities followed by Poisson brackets.				
	e.	Write an expression which uses Gauge transformation.				
	f.	Give some examples where small oscillation theory is applicable.				
	g.	Mention two canonicality conditions used in Classical Mechanics.				
Q-5		Attempt all questions	(14)			
		Explain Canonical transformation in detail and obtain the Hamilton's canonical equations.	07			
		Explain the working of Generating functions in obtaining new Hamiltonian for a system.	07			
		OR				
Q-5		Enumerate on Poisson Bracket and its importance.	07			
		Explain the Hamilton-Jacobi theory	07			
Q-6		Attempt all questions	(14)			
-		Deduce the characteristic equation for the case of two coupled oscillators.	07			
		Comment on the usefulness of Infinitesimal Transformation in Classical Mechanics	07			
		OR				
Q-6		Attempt all Questions				
		Obtain the expression for potential energy for a system of n particles of mass ' m '	08			
		connected by linear springs.				
		"Gauge transformations are widely used in EM theory". Comment on this	06			
		statement.				

